Super Talent SSD: 16GB of Solid State Goodness
by Gary Key on May 7, 2007 4:00 AM EST- Posted in
- Storage
Super Talent SSD16GB25/25M Features
The external design of the Super Talent 16GB SSD is offered in either a hard plastic suitable for a commercial rating or high-strength aluminum design for industrial usage. The hard plastic design is capable of operating temperatures from 0C to 70C with the metal casing featuring a temperature range from -40C to 85C. The drive is based on the industry standard 2.5" form factor with measurements of 69.9mm x 100.2mm x 9.5mm. The drive utilizes a standard SATA interface for both power and data transfer capabilities.
Hard Disk Test Comparison and Features
The Super Talent SSD16GB25/25M features a capacity of 16GB with capacity in the 2.5" form factor family ranging from 4GB to 64GB. The 16GB drive sells for approximately $575 at this time. The drive is marketed into the commercial and industrial sectors with an emphasis placed on use in such products as ATM, factory automation machines, measuring products, point of sale devices, ticket-vending machines, parking systems, and general industrial equipment that requires a storage device with a high degree of tolerance to environmental conditions.
The SSD16GB25/25M features a read seek time of less than 1ms, a maximum read/write speed of up to 28 MB/sec, a sustained transfer rate of 25 MB/sec, and an estimated write/erase cycle of approximately 100,000 cycles. This equates into a 1,000,000 hour MTBF rating and indicates a 10 year life expectancy based upon normal usage patterns. Super Talent has developed a set of proprietary wear leveling algorithms along with built in EDD/EDC functions to ensure excellent data integrity over the course of the drive's lifespan.
Looking at the specifications, it should become immediately apparent that we should not expect class leading performance in all applications. The Super Talent drive has no cache, and the maximum read/write speeds are clearly lower than the best hard drives currently available. It's also worth noting that the relatively low read/write speeds and lack of cache make the question of SATA interface a moot point. While the drive can of course function with a chipset that supports SATA 3.0Gbps connections, it will only utilize the 1.5Gbps standard, and actual transfer rates are still significantly lower than the maximum 150 MB per second SATA is capable of transmitting.
The Super Talent drive is truly silent as indicated by the acoustics test, features a very low power envelope with load requirements being five times less than the Seagate Momentus drive, and excellent thermals considering our room temperature base was 24C. The drive is designed to withstand 1500G of shock and 16G of vibration under operating conditions.
The external design of the Super Talent 16GB SSD is offered in either a hard plastic suitable for a commercial rating or high-strength aluminum design for industrial usage. The hard plastic design is capable of operating temperatures from 0C to 70C with the metal casing featuring a temperature range from -40C to 85C. The drive is based on the industry standard 2.5" form factor with measurements of 69.9mm x 100.2mm x 9.5mm. The drive utilizes a standard SATA interface for both power and data transfer capabilities.
Hard Disk Test Comparison and Features
Drive Specifications | |||
Super Talent Flash Drive 16GB SSD16GB25/25M | Seagate Momentus 7200.2 160GB ST9160823ASG | Western Digital Raptor 150GB WD1500ADFD | |
Manufacturer's Stated Capacity | 16 GB | 160 GB | 150 GB |
Operating System Stated Capacity | 15.5 GB | 149.04 GB | 139.73 GB |
Interface | SATA | SATA 3Gb/s | SATA 1.5Gb/s |
Rotational Speed | n/a | 7,200 RPM | 10,000 RPM |
Cache Size | n/a | 8 MB | 16 MB |
Average Latency | n/a | 4.17 ms (nominal) | 2.99 ms (nominal) |
Read Seek Time | 1 ms | 11 ms | 4.6 ms |
Number of Heads | n/a | 4 | 4 |
Number of Platters | n/a | 2 | 2 |
Power Draw Idle / Load | .16W / .48W | .87W / 2.42W | 9.19W / 10.02W |
Acoustics Idle / Load | 0 dB(A) / 0 dB(A) | 27 dB(A) / 32 dB(A) | 35 dB(A) / 48 dB(A) |
Thermals Idle / Load | 24C / 25C | 27C / 31C | 47C / 58C |
Write/Erase Cycles | 100,000 Estimated | - | - |
Command Queuing | n/a | Native Command Queuing | Native Command Queuing |
Warranty | OEM Specific | 5 Year - Retail or OEM | 5 Year - Retail or OEM |
The Super Talent SSD16GB25/25M features a capacity of 16GB with capacity in the 2.5" form factor family ranging from 4GB to 64GB. The 16GB drive sells for approximately $575 at this time. The drive is marketed into the commercial and industrial sectors with an emphasis placed on use in such products as ATM, factory automation machines, measuring products, point of sale devices, ticket-vending machines, parking systems, and general industrial equipment that requires a storage device with a high degree of tolerance to environmental conditions.
The SSD16GB25/25M features a read seek time of less than 1ms, a maximum read/write speed of up to 28 MB/sec, a sustained transfer rate of 25 MB/sec, and an estimated write/erase cycle of approximately 100,000 cycles. This equates into a 1,000,000 hour MTBF rating and indicates a 10 year life expectancy based upon normal usage patterns. Super Talent has developed a set of proprietary wear leveling algorithms along with built in EDD/EDC functions to ensure excellent data integrity over the course of the drive's lifespan.
Looking at the specifications, it should become immediately apparent that we should not expect class leading performance in all applications. The Super Talent drive has no cache, and the maximum read/write speeds are clearly lower than the best hard drives currently available. It's also worth noting that the relatively low read/write speeds and lack of cache make the question of SATA interface a moot point. While the drive can of course function with a chipset that supports SATA 3.0Gbps connections, it will only utilize the 1.5Gbps standard, and actual transfer rates are still significantly lower than the maximum 150 MB per second SATA is capable of transmitting.
The Super Talent drive is truly silent as indicated by the acoustics test, features a very low power envelope with load requirements being five times less than the Seagate Momentus drive, and excellent thermals considering our room temperature base was 24C. The drive is designed to withstand 1500G of shock and 16G of vibration under operating conditions.
44 Comments
View All Comments
Shadar - Monday, May 7, 2007 - link
Your post wreaks of arrogance, assuming that everyone uses a computer just as you do.For heavy gamers who also want to encode files there is no perfect solution currently. If you put a 4 disk SSD raid array together it would likely be faster than regular hard drives in its transfer rate and its seek times are faster too. Thus its faster for games and faster for encoding files.
Sure, it's 2000 bucks today... but within 6 months I guarantee you will be able to get 4 ssd's for 1000 or less. Maybe not 16GB each but 4 8gb disks is plenty.
Plus some people don't care about cost, they care about speed. If you care about cost you arn't buying even 1 of these. These are meant for the power user... and a power user would raid these things if it drastically increased performance. We don't know if it does though because there are no tests of it.
fc1204 - Monday, May 7, 2007 - link
Um... there are RAID 0/1 SSD solutions out there. People that review these SSD's should open them up and check what's on the board.Really, you need to know what type of flash and the controller(s) are used in order to understand the drive. It could be using MLC flash that is used in consumer USB pen drives or SD cards. It's cheaper than the SLC, but carries a 5K or 10K write/erase cycle limit per block. SLC is up to 100K.
Still, 100K*16GB gets you about 2 years with this drive if you write 25MB/s straight for 2 years. Wearing out is not a problem that HDD can avoid. The mechanical parts, especially the spindle, of your HDD has a life span. You probably don't write 25MB/s for 60*60*24*365=3,153,600 s/year. If you did, I think your drive would probably not last as long as you think it would. I am sorry, people in the embedded systems market spend the money on flash SSDs because the data is safer than HDDs. Less moving parts vs. no moving parts.
There are also companies that make SD/CF RAID solutions. Let's not get upset because this is a embedded systems solution that is being shifted into the consumer market. We should try to really understand what is being done rather than shoot off speculations.
PandaBear - Thursday, May 10, 2007 - link
Totally agree. In some cases the environment cannot use mechanical HD because of the temperature or altitude, or high shock. There is no choice but to use flash.For consumer, the main advantage is power saving, heat, and noise. So there is no advantage for desktop yet, but for ultra portable laptop it is good. If you want performance, you have to pay, and you probably won't be using a large one because you will be optimizing your application (i.e. a database server with 8GB of data with mainly read cycles, and has to be fast) with lots of ram and dedicated processors to begin with. It targets people that uses laptop in remote location that battery life and portability means everything, but they don't waste their battery playing solitary or mp3s, but take survey with equipments, mobile registration offices for emergency response, word processing on a 12 hr flight, military/police setting up check points, etc. They would rather buy more expensive laptops than hauling a diesel generator around.
Just like porn, if you don't get it, it is not for you.
Traciatim - Monday, May 7, 2007 - link
Why were there no Web server or Database benchmarks to show off where SSDs really shine?dm0r - Monday, May 7, 2007 - link
Obviously the first SSD will be more weak in performance agains traditionals Hard Drives.SSD will be improved a lot because its a very recent tecnology, but this drives are a exelent choice for laptops and UMPC's because of its low power consuption, generates low heat and makes no noise, thanks to literally abandon mechanics.Good review Gary!
yyrkoon - Monday, May 7, 2007 - link
Actually, these are not the first SSD drives, and some of the first were actually much faster.SSD has been around a lot longer than people think, this are just 'consumer greade', in that they support consumer grade interfaces. Besides all that, there are people such as myself, who do not even consider NAND drives SSD to begin with. In our world, SSD uses static ram, that is much faster, and capable of handling much faster transfers, and do not suffer from this read / write cycle MTBF issue (per se). These types of SSD's however, would not retain any data after the power is turned off, and would require a battery (or some form of electrical current) to do so. So, in this one respect, they are inferior, but superior in most other aspects.
Olaf van der Spek - Monday, May 7, 2007 - link
What's EDD?
tirouspsss - Monday, May 7, 2007 - link
the article doesnt surprise me in terms of performance, dunno why but for some reason i had this inclination that ssds werent going to be all that (at least for now).. & the 100K write/read cycle has always bothered me - i just dont trust it.For JW:
"Besides, with the rate of progress it's likely that in the future SSDs will get replaced every couple of years just like today's HDDs."
what do u mean BESIDES??? this ISNT a good thing. werent u saying the ssd is good for 10yrs etc? so y should they get replaced so quick then? plus its bad for the environment, is it not?
Chriz - Monday, May 7, 2007 - link
I think Jared meant that for consumers using SSDs, they would still replace them every couple years just like HDD's because newer ones would be larger and better performance.JarredWalton - Monday, May 7, 2007 - link
Yup. I worked at a large corporation where we had a million dollar RAID setup for the main servers. Some huge box with 72 15K SCSI drives in it. After about four years, every old drive in there (which was running fine) was yanked out and replaced. Why? Because the new drives were faster, even with RAID 5 + hot spare there was concern that multiple drive failures would results in a loss of data, and for a location that generates something like several million dollars worth of product movement every day they couldn't risk any loss of data. So they upgraded all the old drives to new drives just to be safe, and the new drives were also a bit faster. For that type of market, the replacement costs of hardware are nothing compared to the potential for lost revenue.